Gamma Frequency and the Spatial Tuning of Primary Visual Cortex
نویسندگان
چکیده
Visual stimulation produces oscillatory gamma responses in human primary visual cortex (V1) that also relate to visual perception. We have shown previously that peak gamma frequency positively correlates with central V1 cortical surface area. We hypothesized that people with larger V1 would have smaller receptive fields and that receptive field size, not V1 area, might explain this relationship. Here we set out to test this hypothesis directly by investigating the relationship between fMRI estimated population receptive field (pRF) size and gamma frequency in V1. We stimulated both the near-center and periphery of the visual field using both large and small stimuli in each location and replicated our previous finding of a positive correlation between V1 surface area and peak gamma frequency. Counter to our expectation, we found that between participants V1 size (and not PRF size) accounted for most of the variability in gamma frequency. Within-participants we found that gamma frequency increased, rather than decreased, with stimulus eccentricity directly contradicting our initial hypothesis.
منابع مشابه
Spatiotemporal frequency tuning of BOLD and gamma band MEG responses compared in primary visual cortex
In this study, the spatial and temporal frequency tuning characteristics of the MEG gamma (40-60 Hz) rhythm and the BOLD response in primary visual cortex were measured and compared. In an identical MEG/fMRI paradigm, 10 participants viewed reversing square wave gratings at 2 spatial frequencies [0.5 and 3 cycles per degree (cpd)] reversing at 5 temporal frequencies (0, 1 6, 10, 15 Hz). Three-d...
متن کامل[Spatial frequency tuning characteristics of cat primary visual cortex at different topological locations by optical imaging].
Using optical imaging based on intrinsic signals, we studied spatial frequency tuning characteristics of cat primary visual cortex at different visual topological locations. We found that the areas representing the peripheral visual field had null or very weak responses to high spatial frequency grating stimuli, whereas the areas representing the central visual field responded to the stimuli of...
متن کاملCortical maps of separable tuning properties predict population responses to complex visual stimuli.
In the earliest cortical stages of visual processing, a scene is represented in different functional domains selective for specific features. Maps of orientation and spatial frequency preference have been described in the primary visual cortex using simple sinusoidal grating stimuli. However, recent imaging experiments suggest that the maps of these two spatial parameters are not sufficient to ...
متن کاملBOLD Responses in Human Primary Visual Cortex are Insensitive to Substantial Changes in Neural Activity
The relationship between blood oxygenation level dependent-functional magnetic resonance imaging (BOLD-fMRI) and magnetoencephalography (MEG) metrics were explored using low-level visual stimuli known to elicit a rich variety of neural responses. Stimuli were either perceptually isoluminant red/green or luminance-modulated black/yellow square-wave gratings with spatial frequencies of 0.5, 3, an...
متن کاملDynamics of spatial frequency tuning in mouse visual cortex.
Neuronal spatial frequency tuning in primary visual cortex (V1) substantially changes over time. In both primates and cats, a shift of the neuron's preferred spatial frequency has been observed from low frequencies early in the response to higher frequencies later in the response. In most cases, this shift is accompanied by a decreased tuning bandwidth. Recently, the mouse has gained attention ...
متن کامل